DOI: 10.1002/ejic.200501090

Structural and Dynamic Studies of Zinc, Gallium, and Cadmium Complexes of a Dicarboxylate Pendant-Armed Cross-Bridged Cyclen

Weijun Niu, [a] Edward H. Wong, *[a] Gary R. Weisman, *[a] Yijie Peng, [a] Carolyn J. Anderson, [b] Lev N. Zakharov, [c] James A. Golen, [c][\ddagger] and Arnold L. Rheingold [c]

Keywords: Zinc / Gallium / Cadmium / Cyclen / Cross-bridged ligand / Pendant arms

Inadvertently, the wrong X-ray structure was reported^[1] for the Zn-CB-DO2A complex. Instead, the structural data for a related zinc complex was actually presented. The first paragraph of the section X-ray Structural Data and Figure 5 on page 3312, Table 1 on page 3313, the last two sentences of the paragraph $[Zn\cdot 1](NaClO_4)_{1.5}$ and Table 3 on page 3314, and the paragraph X-ray Crystallography on page 3315 should be replaced as follows (in addition, a corrected X-ray CIF file was deposited with the CCDC):

X-ray Structural Data

The core structure of the zinc complex [Zn·1] is shown in Figure 5. The Zn^{II} cation is fully enveloped within the cis-N₄O₂ donor set of the cross-bridged ligand in a distorted octahedral geometry. The axial N(3)-Zn(1)-N(4) angle of 156.97(11) [158.36(10)]° (structural data for a second independent molecule are given in brackets) is substantially away from linearity, showing that the Zn^{II} is distended from the cross-bridged cyclen cavity. Previous structural data of zinc complexes of the cross-bridged cyclen and its derivatives have also shown this distention from the ligand cavity with axial N-Zn-N angles between 148 and 159°.[16-18] Another manifestation of these distortions can also be seen in their longer axial N–Zn bonds (2.17–2.26 Å), similar to the average of 2.19 Å found in [Zn·1]. All Zn-N and Zn-O bond lengths are within a relatively narrow range of 2.03-2.20 Å. Selected bond lengths and angles are shown in Table 1. An X-ray structure of a DOTA complex of zinc(II) featuring a related cis-N₄O₂ ligand coordination mode has been reported. This has an axial N–Zn–N angle of 153.9°, an axial Zn–N distance of 2.232 Å, an equatorial Zn–N distance of 2.171 Å, and a shorter Zn–O distance of 2.037 Å. However, without the cross-bridging ethylene, the equatorial N–Zn–N angle is opened up to 107.8° [compared to the 83.6(1)° for N(1)–Zn(1)–N(2) here]. Also, the coordinated carboxylate pendant arms are on the equatorial macrocyclic nitrogen atoms rather than the axial ones and this DOTA structure is thus close to $C_{2\nu}$ symmetry.

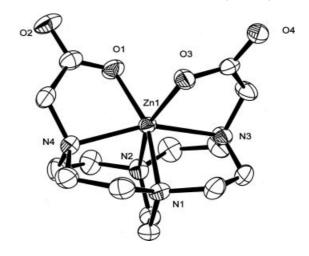


Figure 5. Molecular structure of Zn-CB-DO2A·NaClO₄; hydrogen atoms and sodium perchlorate have been omitted for clarity.

 [a] Department of Chemistry, University of New Hampshire, Durham, New Hampshire 03824, USA Fax: +1-603-862-4278 E-mail: ehw@cisunix.unh.edu gary.weisman@unh.edu

[b] Mallinckrodt Institute of Radiology, Washington University, School of Medicine, St. Louis, MO 63110, USA

Fax: +1-314-362-9940

E-mail: AndersonCJ@mir.wustl.edu

[c] Department of Chemistry and Biochemistry, University of California.

San Diego, La Jolla, California 92093, USA E-mail: arnrhein@chem.ucsd.edu

[‡] On leave from the Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, USA X-ray quality crystals were grown by ether diffusion into a sample dissolved in methanol solution. These have a composition of $[Zn\cdot 1](NaClO_4)(CH_3OH)(H_2O)$.

X-ray Crystallography: Diffraction intensity data were collected with Bruker Smart Apex CCD ([Zn·1]) and Siemens P4 CCD ([Ga·1]NO₃) diffractometers. Crystal data collection and refinement parameters are given in Table 3. The structures were solved using direct methods, completed by subsequent difference Fourier syntheses, and refined by full-matrix least-squares procedures on F^2 . SADABS absorption corrections were applied to [Ga·1]NO₃ data ($T_{min}/T_{max} = 0.724$). In both structures all non-hydrogen

Table 1. Selected bond lengths [Å] and bond angles [°] for [Zn·1] (values for two symmetry-independent molecules are given).

Zn(1)–O(1)	2.032(3)	O(1)-Zn(1)-O(3)	89.58(11)
Zn(1)-O(3)	2.047(2)	O(1)-Zn(1)-N(1)	159.24(11)
Zn(1)-N(1)	2.130(3)	O(1)-Zn(1)-N(2)	98.80(12)
Zn(1)-N(2)	2.116(3)	N(1)-Zn(1)-N(2)	83.60(12)
Zn(1)-N(3)	2.193(3)	N(3)-Zn(1)-N(4)	156.97(11)
Zn(1)-N(4)	2.195(3)	N(1)-Zn(1)-N(3)	83.08(12)
Zn(2)-O(5)	2.058(2)	O(5)-Zn(2)-O(7)	89.55(9)
Zn(2)-O(7)	2.040(2)	O(5)-Zn(2)-N(5)	160.24(10)
Zn(2)-N(5)	2.123(3)	O(5)-Zn(2)-N(6)	96.84(10)
Zn(2)-N(6)	2.126(3)	N(5)-Zn(2)-N(6)	84.03(11)
Zn(2)-N(7)	2.172(3)	N(5)-Zn(2)-N(7)	83.76(10)
Zn(2)-N(8)	2.182(3)	N(7)-Zn(2)-N(8)	158.36(10)

Table 3. Crystallographic data for [Zn·1] and [Ga·1]NO₃.

	[Zn·1]	[Ga·1]NO ₃
Empirical formula	$C_{30}H_{48}Cl_{2}N_{8}Na_{2}O_{20}Zn_{2}$	$C_{14}H_{24}GaN_5O_7$
Formula mass	1088.38	444.10
Crystal system, space group	monoclinic, $P2_1/c$	orthorhombic, $P2_12_12_1$
a [Å]	8.8197(6)	8.7107(7)
b [Å]	17.2311(13)	12.5119(10)
c [Å]	29.841(2)	7.5586(6)
a [°]	90.0	90.0
β [°]	96.319(2)	90.0
γ [°]	90.0	90.0
$V[\mathring{A}^3]$	4507.4(6)	823.79(11)
Z	4	2
T[K]	218(2)	218(2)
λ[Å]	$0.71073 \text{ (Mo-}K_{\alpha})$	$0.71073 \text{ (Mo-}K_{a})$
$\rho_{\rm calcd.}$ [g·cm ⁻³]	1.604	1.790
$\mu \text{ [mm}^{-1}]$	1.286	1.724
Measured reflections	33251	6004
Independent reflections	$10841 (R_{\text{int}} = 0.0352)$	$1967 (R_{\text{int}} = 0.0260)$
$R^{[a]}$, $R^{[b]}(\omega F^2)$ (obsd. data)	0.0514, 0.1415	0.0231, 0.0553
$R^{[a]}$, $R^{[b]}(\omega F^2)$ (all data)	0.0638, 0.1495	0.0244, 0.0557
GOF	1.027	1.006

[a] $R = \Sigma ||F_o| - |F_c||/\Sigma |F_o|$. [b] $R(\omega F^2) = \{\Sigma [\omega(F_o^2 - F_c^2)^2]/\Sigma [\omega(F_o^2)^2]\}^{1/2}$; $\omega = 1/[\sigma^2(F_o^2) + (aP)^2 + bP]$, $P = [2F_c^2 + \max(F_o, 0)]/3$.

atoms were refined with anisotropic displacement coefficients. Hydrogen atoms were treated as idealized contributions. The Flack parameter for [Ga·1]NO₃ is 0.014(11). All software and sources of scattering factors are contained in the SHELXTL (5.10) program package (G. Sheldrick, Bruker XRD, Madison, WI, USA). CCDC-291598 ([Zn·1]) and -229394 ([Ga·1]NO₃) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre, 12 Union Road,

Cambridge CB2 1EZ, UK; Fax: +44-1223-336-033; E-mail: deposit@ccdc.cam.ac.uk].

Received: December 6, 2005 The Authors

^[1] W. Niu, E. H. Wong, G. R. Weisman, Y. Peng, C. J. Anderson, L. N. Zakharov, J. A. Golen, A. L. Rheingold, Eur. J. Inorg. Chem. 2004, 3310–3315.